Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(49): 17903-17920, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039288

RESUMO

Coral reef survival is threatened globally. One way to restore this delicate ecosystem is to enhance coral growth by the controlled propagation of coral fragments. To be sustainable, this technique requires the use of biocompatible underwater adhesives. Hydrogels based on rationally designed ultrashort self-assembling peptides (USP) are of great interest for various biological and environmental applications, due to their biocompatibility and tunable mechanical properties. Implementing superior adhesion properties to the USP hydrogel compounds is crucial in both water and high ionic strength solutions and is relevant in medical and marine environmental applications such as coral regeneration. Some marine animals secrete large quantities of the aminoacids dopa and lysine to enhance their adhesion to wet surfaces. Therefore, the addition of catechol moieties to the USP sequence containing lysine (IIZK) should improve the adhesive properties of USP hydrogels. However, it is challenging to place the catechol moiety (Do) within the USP sequence at an optimal position without compromising the hydrogel self-assembly process and mechanical properties. Here, we demonstrate that, among three USP hydrogels, DoIIZK is the least adhesive and that the adhesiveness of the IIZDoK hydrogel is compromised by its poor mechanical properties. The best adhesion outcome was achieved using the IIZKDo hydrogel, the only one to show equally sound adhesive and mechanical properties. A mechanistic understanding of this outcome is presented here. This property was confirmed by the successful gluing of coral fragments by means of IIZKDo hydrogel that are still thriving after more than three years since the deployment. The validated biocompatibility of this underwater hydrogel glue suggests that it could be advantageously implemented for other applications, such as surgical interventions.


Assuntos
Antozoários , Recuperação e Remediação Ambiental , Hidrogéis , Animais , Adesivos/química , Di-Hidroxifenilalanina/química , Ecossistema , Hidrogéis/química , Lisina , Peptídeos
2.
Biomed Res Int ; 2023: 3892370, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869628

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has greatly affected all aspect of life. Although several vaccines and pharmaceuticals have been developed against SARS-CoV-2, the emergence of mutated variants has raised several concerns. The angiotensin-converting enzyme (ACE2) receptor cell entry mechanism of this virus has not changed despite the vast mutation in emerging variants. Inhibiting the spike protein by which the virus identifies the host ACE2 receptor is a promising therapeutic countermeasure to keep pace with rapidly emerging variants. Here, we synthesized two ACE2-derived peptides, P1 and P25, to target and potentially inhibit SARS-CoV-2 cell entry. These peptides were evaluated in vitro using pseudoviruses that contained the SARS-CoV-2 original spike protein, the Delta-mutated spike protein, or the Omicron spike protein. An in silico investigation was also done for these peptides to evaluate the interaction of the synthesized peptides and the SARS-CoV-2 variants. The P25 peptide showed a promising inhibition potency against the tested pseudoviruses and an even higher inhibition against the Omicron variant. The IC50 of the Omicron variant was 60.8 µM, while the IC50s of the SARS-CoV-2 original strain and the Delta variant were 455.2 µM and 546.4 µM, respectively. The in silico experiments also showed that the amino acid composition design and structure of P25 boosted the interaction with the spike protein. These findings suggest that ACE2-derived peptides, such as P25, have the potential to inhibit SARS-CoV-2 cell entry in vitro. However, further in vivo studies are needed to confirm their therapeutic efficacy against emerging variants.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Peptídeos/farmacologia , Ligação Proteica
4.
Biomacromolecules ; 20(12): 4546-4562, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31697482

RESUMO

Macromolecular architecture plays an important role in the self-assembly process of block copolymer amphiphiles. Herein, two series of stimuli-responsive amphiphilic 3-miktoarm star hybrid terpolypeptides and their corresponding linear analogues were synthesized exhibiting the same overall composition and molecular weight but different macromolecular architecture. The macromolecular architecture was found to be a key parameter in defining the morphology of the nanostructures formed in aqueous solutions as well as to alter the self-assembly behavior of the polymers independently of their composition. In addition, it was found that the assemblies prepared from the star-shaped polymers showed superior tolerance against enzymatic degradation due to the increased corona block density on the outer surface of the nanoparticles. Encapsulation of the hydrophobic anticancer drug Everolimus resulted in the formation of intriguing non-spherical and non-symmetric pH-responsive nanostructures, such as "stomatocytes" and "multi-compartmentalized suprapolymersomes", while the pH-triggered release of the drug was also investigated. Owing to the similarities of the developed "stomatocytes" with red blood cells, in combination with their pH-responsiveness and superior stability over enzymatic degradation, they are expected to present advanced drug delivery properties and have the ability to bypass several extra- and intracellular barriers to reach and effectively treat cancer cells.


Assuntos
Antineoplásicos , Everolimo , Hidrogéis , Nanopartículas/química , Peptídeos , Antineoplásicos/química , Antineoplásicos/farmacocinética , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Everolimo/química , Everolimo/farmacocinética , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Hidrogéis/farmacocinética , Concentração de Íons de Hidrogênio , Neoplasias/tratamento farmacológico , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacocinética
5.
Biomacromolecules ; 19(11): 4453-4462, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30351914

RESUMO

Poly(sarcosine) (PSar) is a non-ionic hydrophilic polypeptoid with numerous biologically relevant properties, making it an appealing candidate for the development of amphiphilic block copolymer nanostructures. In this work, the fabrication of poly(sarcosine)-based diblock copolymer nano-objects with various morphologies via aqueous reversible addition-fragmentation chain-transfer (RAFT)-mediated photoinitiated polymerization-induced self-assembly (photo-PISA) is reported. Poly(sarcosine) was first synthesized via ring-opening polymerization (ROP) of sarcosine N-carboxyanhydride, using high-vacuum techniques. A small molecule chain transfer agent (CTA) was then coupled to the active ω-amino chain end of the telechelic polymer for the synthesis of a poly(sarcosine)-based macro-CTA. Controlled chain-extensions of a commercially available water-miscible methacrylate monomer (2-hydroxypropyl methacrylate) were achieved via photo-PISA under mild reaction conditions, using PSar macro-CTA. Upon varying the degree of polymerization and concentration of the core-forming monomer, morphologies evolving from spherical micelles to worm-like micelles and vesicles were accessed, as determined by dynamic light scattering and transmission electron microscopy, resulting in the construction of a detailed phase diagram. The resistance of both colloidally stable empty vesicles and enzyme-loaded nanoreactors against degradation by a series of proteases was finally assessed. Overall, our findings underline the potential of poly(sarcosine) as an alternative corona-forming polymer to poly(ethylene glycol)-based analogues of PISA assemblies for use in various pharmaceutical and biomedical applications.


Assuntos
Nanoestruturas/química , Peptídeo Hidrolases/metabolismo , Processos Fotoquímicos , Polímeros/química , Sarcosina/química , Técnicas de Química Sintética , Peroxidase do Rábano Silvestre/metabolismo , Polimerização , Propriedades de Superfície , Água
6.
Biomacromolecules ; 19(9): 3840-3852, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30095907

RESUMO

A novel, multifunctional hydrogel that exhibits a unique set of properties for the effective treatment of pancreatic cancer (PC) is presented. The material is composed of a pentablock terpolypeptide of the type PLys- b-(PHIS- co-PBLG)-PLys- b-(PHIS- co-PBLG)- b-PLys, which is a noncytotoxic polypeptide. It can be implanted via the least invasive route and selectively delivers gemcitabine to efficiently treat PC. Simply mixing the novel terpolypeptide with an aqueous solution of gemcitabine within a syringe results in the facile formation of a hydrogel that has the ability to become liquid under the shear rate of the plunger. Upon injection in the vicinity of cancer tissue, it immediately reforms into a hydrogel due to the unique combination of its macromolecular architecture and secondary structure. Because of its pH responsiveness, the hydrogel only melts close to PC; thus, the drug can be delivered directionally toward the cancerous rather than healthy tissues in a targeted, controlled, and sustained manner. The efficacy of the hydrogel was tested in vivo on human to mouse xenografts using the drug gemcitabine. It was found that the efficacy of the hydrogel loaded with only 40% of the drug delivered in one dose was equal to or slightly better than the peritumoral injection of 100% of the free drug delivered in two doses, the typical chemotherapy used in clinics so far. This result suggests that the hydrogel can direct the delivery of the encapsulated drug effectively in the tumor tissue. Enzymes lead to its biodegradation, avoiding removal by resection of the polypeptidic carrier after cargo delivery. The unique properties of the hydrogel formed can be predetermined through its molecular characteristics, rendering it a promising modular material for many biological applications.


Assuntos
Antineoplásicos/administração & dosagem , Desoxicitidina/análogos & derivados , Liberação Controlada de Fármacos , Hidrogéis/química , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Desoxicitidina/administração & dosagem , Desoxicitidina/uso terapêutico , Feminino , Histidina/química , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos NOD , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/química , Gencitabina
7.
Polymers (Basel) ; 9(10)2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-30965839

RESUMO

The anionic polymerization of styrene and 1,3-butadiene in the presence of phosphazene bases (t-BuP4, t-BuP2 and t-BuP1), in benzene at room temperature, was studied. When t-BuP1 was used, the polymerization proceeded in a controlled manner, whereas the obtained homopolymers exhibited the desired molecular weights and narrow polydispersity (Р< 1.05). In the case of t-BuP2, homopolymers with higher than the theoretical molecular weights and relatively low polydispersity were obtained. On the other hand, in the presence of t-BuP4, the polymerization of styrene was uncontrolled due to the high reactivity of the formed carbanion. The kinetic studies from the polymerization of both monomers showed that the reaction rate follows the order of [t-BuP4]/[sec-BuLi] >>> [t-BuP2]/[sec-BuLi] >> [t-BuP1]/[sec-BuLi] > sec-BuLi. Furthermore, the addition of t-BuP2 and t-BuP1 prior the polymerization of 1,3-butadiene allowed the synthesis of polybutadiene with a high 1,2-microstructure (~45 wt %), due to the delocalization of the negative charge. Finally, the one pot synthesis of well-defined polyester-based copolymers [PS-b-PCL and PS-b-PLLA, PS: Polystyrene, PCL: Poly(ε-caprolactone) and PLLA: Poly(L-lactide)], with predictable molecular weights and a narrow molecular weight distribution (Р< 1.2), was achieved by sequential copolymerization in the presence of t-BuP2 and t-BuP1.

8.
Biomacromolecules ; 17(3): 1186-97, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26867986

RESUMO

The self-assembly in aqueous solution of three novel telechelic conjugates comprising a central hydrophilic polymer and short (trimeric or pentameric) tyrosine end-caps has been investigated. Two of the conjugates have a central poly(oxyethylene) (polyethylene oxide, PEO) central block with different molar masses. The other conjugate has a central poly(L-alanine) (PAla) sequence in a purely amino-acid based conjugate. All three conjugates self-assemble into ß-sheet based fibrillar structures, although the fibrillar morphology revealed by cryogenic-TEM is distinct for the three polymers--in particular the Tyr5-PEO6k-Tyr5 forms a population of short straight fibrils in contrast to the more diffuse fibril aggregates observed for Tyr5-PEO2k-Tyr5 and Tyr3-PAla-Tyr3. Hydrogel formation was not observed for these samples (in contrast to prior work on related systems) up to quite high concentrations, showing that it is possible to prepare solutions of peptide-polymer-peptide conjugates with hydrophobic end-caps without conformational constraints associated with hydrogelation. The Tyr5-PEO6k-Tyr5 shows significant PEO crystallization upon drying in contrast to the Tyr5-PEO2k-Tyr5 conjugate. Our findings point to the remarkable ability of short hydrophobic peptide end groups to modulate the self-assembly properties of polymers in solution in model peptide-capped "associative polymers". Retention of fluidity at high conjugate concentration may be valuable in potential future applications of these conjugates as bioresponsive or biocompatible materials, for example exploiting the enzyme-responsiveness of the tyrosine end-groups.


Assuntos
Materiais Biocompatíveis/química , Peptídeos/química , Polietilenoglicóis/química , Materiais Biocompatíveis/síntese química , Interações Hidrofóbicas e Hidrofílicas , Polimerização
9.
Biomacromolecules ; 15(9): 3412-20, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25105839

RESUMO

Amyloid fibrils are formed by a model surfactant-like peptide (Ala)10-(His)6 containing a hexa-histidine tag. This peptide undergoes a remarkable two-step self-assembly process with two distinct critical aggregation concentrations (cac's), probed by fluorescence techniques. A micromolar range cac is ascribed to the formation of prefibrillar structures, whereas a millimolar range cac is associated with the formation of well-defined but more compact fibrils. We examine the labeling of these model tagged amyloid fibrils using Ni-NTA functionalized gold nanoparticles (Nanogold). Successful labeling is demonstrated via electron microscopy imaging. The specificity of tagging does not disrupt the ß-sheet structure of the peptide fibrils. Binding of fibrils and Nanogold is found to influence the circular dichroism associated with the gold nanoparticle plasmon absorption band. These results highlight a new approach to the fabrication of functionalized amyloid fibrils and the creation of peptide/nanoparticle hybrid materials.


Assuntos
Ouro/química , Histidina/química , Nanopartículas Metálicas/química , Níquel/química , Peptídeos/química
10.
Macromol Biosci ; 14(1): 131-41, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24106236

RESUMO

Magnetic nanodevices based on poly[(methacrylic acid)-co-(N-isopropylacrylamide)] [P(MAA-co-NIPAAm)] are prepared and used as drug delivery systems employing daunorubicin (DNR) as a model drug. The magnetic nanocontainers exploit the pH, temperature, and magnetic response of the polymeric shell constituents and magnetic nanoparticles, respectively, for controlled pH, temperature and alternating magnetic field triggered drug release. The in vitro cytotoxicity of both DNR-loaded and empty nanocontainers is examined on MCF-7 breast cancer cells along with the intracellular distribution of DNR. The results show that the DNR-loaded nanocontainers have an anti-tumor effect comparable to the free drug. The current observations provide important information for potent drug delivery and release systems.


Assuntos
Acrilamidas/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Nanopartículas/química , Ácidos Polimetacrílicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Daunorrubicina/administração & dosagem , Feminino , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7/efeitos dos fármacos , Fenômenos Magnéticos , Microscopia Confocal , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA